Extensions 1→N→G→Q→1 with N=C22×Dic3 and Q=S3

Direct product G=N×Q with N=C22×Dic3 and Q=S3
dρLabelID
C22×S3×Dic396C2^2xS3xDic3288,969

Semidirect products G=N:Q with N=C22×Dic3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C22×Dic3)⋊1S3 = Dic3×S4φ: S3/C1S3 ⊆ Out C22×Dic3366-(C2^2xDic3):1S3288,853
(C22×Dic3)⋊2S3 = Dic32S4φ: S3/C1S3 ⊆ Out C22×Dic3366(C2^2xDic3):2S3288,854
(C22×Dic3)⋊3S3 = Dic3⋊S4φ: S3/C1S3 ⊆ Out C22×Dic3366(C2^2xDic3):3S3288,855
(C22×Dic3)⋊4S3 = C62.94C23φ: S3/C3C2 ⊆ Out C22×Dic348(C2^2xDic3):4S3288,600
(C22×Dic3)⋊5S3 = C2×D6⋊Dic3φ: S3/C3C2 ⊆ Out C22×Dic396(C2^2xDic3):5S3288,608
(C22×Dic3)⋊6S3 = C62.56D4φ: S3/C3C2 ⊆ Out C22×Dic348(C2^2xDic3):6S3288,609
(C22×Dic3)⋊7S3 = C2×C6.D12φ: S3/C3C2 ⊆ Out C22×Dic348(C2^2xDic3):7S3288,611
(C22×Dic3)⋊8S3 = C62.60D4φ: S3/C3C2 ⊆ Out C22×Dic348(C2^2xDic3):8S3288,614
(C22×Dic3)⋊9S3 = Dic3×C3⋊D4φ: S3/C3C2 ⊆ Out C22×Dic348(C2^2xDic3):9S3288,620
(C22×Dic3)⋊10S3 = C626D4φ: S3/C3C2 ⊆ Out C22×Dic348(C2^2xDic3):10S3288,626
(C22×Dic3)⋊11S3 = C2×D6.3D6φ: S3/C3C2 ⊆ Out C22×Dic348(C2^2xDic3):11S3288,970
(C22×Dic3)⋊12S3 = C22×C3⋊D12φ: S3/C3C2 ⊆ Out C22×Dic348(C2^2xDic3):12S3288,974
(C22×Dic3)⋊13S3 = C22×C6.D6φ: trivial image48(C2^2xDic3):13S3288,972

Non-split extensions G=N.Q with N=C22×Dic3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C22×Dic3).S3 = Dic3.S4φ: S3/C1S3 ⊆ Out C22×Dic3726-(C2^2xDic3).S3288,852
(C22×Dic3).2S3 = C62.6Q8φ: S3/C3C2 ⊆ Out C22×Dic396(C2^2xDic3).2S3288,227
(C22×Dic3).3S3 = C62.97C23φ: S3/C3C2 ⊆ Out C22×Dic348(C2^2xDic3).3S3288,603
(C22×Dic3).4S3 = C623Q8φ: S3/C3C2 ⊆ Out C22×Dic348(C2^2xDic3).4S3288,612
(C22×Dic3).5S3 = C2×Dic3⋊Dic3φ: S3/C3C2 ⊆ Out C22×Dic396(C2^2xDic3).5S3288,613
(C22×Dic3).6S3 = C2×C62.C22φ: S3/C3C2 ⊆ Out C22×Dic396(C2^2xDic3).6S3288,615
(C22×Dic3).7S3 = C22×C322Q8φ: S3/C3C2 ⊆ Out C22×Dic396(C2^2xDic3).7S3288,975
(C22×Dic3).8S3 = C2×Dic32φ: trivial image96(C2^2xDic3).8S3288,602

׿
×
𝔽